1. <track id="4iqmi"></track>

    <pre id="4iqmi"></pre>
    <track id="4iqmi"><strike id="4iqmi"></strike></track>
      1. <tr id="4iqmi"></tr>
      2. Products
        產品中心
        網站首頁 - 技術文章 - 淺析餐飲源VOCs組成特征及應對措施

        淺析餐飲源VOCs組成特征及應對措施

        更新時間:2021-08-16點擊次數:276次
        淺析餐飲源VOCs組成特征及應對措施

        摘 要:烹飪排放是環境揮發性有機化合物(VOCs)的來源之一,嚴重威脅著環境空氣質量和人類健康。結合餐飲油煙VOCs的組成特征,總結近幾年餐飲油煙VOCs凈化技術的研究現狀及其難點,同時闡述了油煙VOCs凈化組合工藝的優勢和必要性。針對現有問題對油煙VOCs凈化組合工藝的發展做出了展望。 關鍵詞:餐飲油煙;組成特征;凈化技術;餐飲油煙監測云平臺;安科瑞
        0.前言        隨著我國餐飲行業的快速發展,餐飲油煙污染已成為城市大氣污染的重要來源之一。餐飲場所主要分布在人口稠密的商業區和居民區,在烹飪過程中產生的油煙污染物具有數多、覆蓋面廣、污染源分散、污染不易擴散等特點,對城市大氣污染的貢獻僅次于機動車污染源和工業源。此外,居民針對烹飪油煙刺激性氣味的投訴越來越多。據相關調查,對餐飲油煙污染的投訴占所有環境投訴的30%-40%,引起了有關部門的極大關注。    
         油煙VOCs的形成、組成特征及危害1.1 油煙VOCs的形成      烹飪油煙是指食物在高溫烹制過程中與食用油反應,生成各種脂質熱氧化和分解的混合物,主要包括固態顆粒物和氣態污染物。油煙的形成主要有三個階段:當加熱溫度為50℃–100℃時,油脂中所含低沸點物質和水分發生汽化,小分子物質散發;溫度為 100℃–260℃時,食用油所含沸點較高的物質發生汽化并分解,形成小油滴(>10 μm);加熱到 260℃以上,高沸點物質急劇汽化,形成大量細顆粒物(0.1–10 μm)。當各階段產生的混合氣體在上升過程中與空氣發生碰撞,溫度迅速下降,形成含冷凝物的氣溶膠,各種混合物散逸至大氣中。1.2 油煙VOCs組成特征       餐飲油煙VOCs的化學成分較為復雜,其化學特性因烹飪風格、烹飪原料、加熱溫度等不同而有很大差異。何萬清等[10]以菜籽油為例,對在不同溫度下加熱產生的油煙VOCs組分進行分析,實驗結果如圖 1 所示。當加熱溫度從130℃上升到260℃時,葵花籽油排放的VOCs的種類和濃度水平都呈上升趨勢。其中,烷烴和醛酮類化合物隨著溫度的升高而升高,且濃度變化范圍較大。圖 1 葵花籽油在不同溫度下的 VOCs 排放濃度      zhang 等測定同一溫度(270℃)下,五種食用油油煙 VOCs 排放種類及濃度。實驗得到,五種食用油 VOCs 的排放濃度依次為:菜籽油(81.0 mg/m3)>大豆油(75.5 mg/m3)>花生(70.9 mg/m3)>玉米油(60.3 mg/m3)>豬油(20.5 mg/m3),這表明富含不飽和脂肪     酸的植物油在270℃下比富含飽和脂肪酸的豬油排放更多VOCs。黃永??疾煸?60℃時,大豆油、花生油和調和油三種食用油非甲烷總烴(Non-methane hydrocarbons,NMHCs)、醛類和苯系物的排放濃度。實驗得出,大豆油加熱產生的油煙中 NMHCs的濃度(31588.33 ppm)明顯高于其他兩種食用油,但三種食用油排放的醛酮類和苯系物濃度水平相當。相比之下,大豆油在高溫狀態下產生的 VOCs 濃度(31995.37 ppm),而花生油和調和油的VOCs 排放濃度相當。綜上所述,烹飪油煙 VOCs 的化學成分主要包括烴類、醛酮、醇類及其他雜環化合物。不同食用油在高溫狀態下排放的 VOCs 種類和濃度都不相同,其中富含不飽和脂肪酸的植物油產生的油煙VOCs濃度。     圖 2 不同餐飲源 VOCs 排放濃度1.3 油煙的危害1.3.1 環境效應        餐飲油煙的排放對空氣質量和人類健康都有顯著影響,其具體環境效應和健康風險如圖3 所示。烹飪產生的 PM2.5等細顆粒物是城市環境霧霾污染和室內污染的重要貢獻者。有研究表明,與西方烹飪風格相比,中國烹飪風格所產生的 PM2.5 含量較高?;钚?VOCs 能促進大氣中的羥基自由基、臭氧和二次有機氣溶膠(secondary organic aerosol,SOA)的形成,       導致光化學煙霧事件并加快二次顆粒物的生成,對城市和區域環境質量影響較大究表示,烹飪會釋放出 SOA 前體,例如烯烴(<C10)、初級半揮發性、中間揮發性有機化合物(primary semi-volatile and intermediate-volatility organic compounds,SVOCs 和 IVOCs)等。同時,Hayes 等通過建模顯示,烹飪排放的 SVOCs和IVOCs占洛杉磯市中心SOA質量19%-35%。假設烹飪排放具有SVOCs和IVOCs的揮發性分布,該結果表明烹飪與汽車尾氣具有相同的 SOA 排放產量。1.3.2 毒理學效應       烹飪排放的污染物包含多種有毒化合物,研究表明,這些化合物對人體產生肺毒性、免疫毒性、遺傳毒性和潛在致癌性等。Lu等設計十一種烹飪菜肴研究中國家庭烹飪呼吸區PM2.5 的排放及對人體健康的影響。結果表明,烹飪的直接呼吸區 PM2.5 平均濃度接近0.60mg/m3,比中國國家室外空氣標準(GB3095-2012,0.075 mg/m3)高約8倍,可導致較高的人類健康風險。油煙污染的潛在健康風險往往會影響到長時間烹飪的人。劉占琴等觀察大鼠吸入1ppm的油煙對肺部的影響。結果顯示,染毒24h后,巨噬細胞有明顯減少,乳酸脫氫酶等物質含量增多,產生急性炎癥,對肺組織和機體造成損傷。實驗和調查發現,烹飪被認為是非吸煙亞洲婦女患有肺癌有關的主要因素之一,相對風險為 1.4-3.8。同時,油煙顆粒黏附在皮膚上會加速皮膚組織老化,生成皺紋,色斑等。圖 3 餐飲油煙 VOCs 的環境效應與健康風險示意圖
        ? 油煙 VOCs 凈化技術餐飲油煙的凈化主要是針對 VOCs 廢氣的處理。VOCs 控制技術分為回收技術和破壞性技術?;厥占夹g是對污染物進行物理處理,主要包括吸附法、吸收法等;破壞性技術是用化學方法將VOCs氧化分解為CO2 和 H2O 等無污染的物質,主要包括催化燃燒法、低溫等離子體法等。兩種控制技術的工作原理和性能對比如表 1。表 1 油煙 VOCs 凈化技術工作原理與性能對比2.1 回收技術2.1.1 吸附法吸附法的基礎是多孔性材料選擇性的從油煙廢氣中吸收一種或多種 VOCs。根據吸附劑的性質不同,一般可分為無機吸附劑、有機吸附劑以及無機-有機混合吸附劑。表2對比了用于VOCs處理的吸附劑性能和工作條件。表 2 吸附劑的工作條件和吸附能力對比      劉超等考察用碳化法制備的油茶果殼炭吸附劑對油煙的吸附性能。結果顯示,油茶果殼炭達到吸附容量(122.6 mg/g)的條件為:油煙進口濃度為 50 mg/m3,體積空速 1.7/h,吸附劑床層高度為 40cm。魏玉濱等利用負載MnO2的蜂窩活性炭與臭氧協同作用考察其對油煙VOCs 特征污染物乙醇的吸附性能。負載 MnO2活性炭對乙醇具有明顯的吸附緩沖性能和催化氧化分解的作用。在反應時間<150 min 時,乙醇去除率達到 80%-90%。然而當反應時間>150 min,吸附劑性能下降,最終去除率維持在 30% -40%。Lee等將椰子殼活性炭(GAC)表面進行酸和堿改性,探究經過酸或堿處理后的 GAC 對鄰的吸附性能。結果表明,在鄰濃度為 393-504 mg/m3,吸附停留 16.8 s 的條件下,經過堿處理的GAC 吸附容量(305.7 mg/g),與酸處理后的GAC相比,堿處理后的GAC表面接受量增加26.5%。Cosseron 等用水熱法分別合成硅石-1 沸石、SSZ-23 沸石、CHA 型沸石和 BEA 型沸石四種吸附劑,在三種不同的溫度 25、75 和 150℃,分別考察其動態吸附能力。實驗測得,在25℃時,四種吸附劑的吸附能力,依次為:BEA 型沸石(141.1 mg/g)> CHA 型沸石(124.9 mg/g)>硅石-1 沸石(105.7 mg/g)>SSZ-23 沸石(5.81 mg/g)。吸附法被較多應用于VOCs 的分離和回收/銷毀,但吸附劑利用率較低,設備維護成本較高,對于吸附油煙 VOCs 的應用案例較少。因此,選擇合適的吸附劑對有效吸附油煙 VOCs至關重要。一種理想的去除VOCs的吸附劑應具有:高吸附容量、熱穩定性強以及高疏水性等優良性質。既保證了循環吸附再生的使用,同時克服常見的水蒸氣的競爭性吸附。2.1.2吸收法      吸收法的凈化效果往往跟吸收液的選擇和吸收設備有關。肖瀟采用鼓泡吸收的方式,考察合適配比的氟碳微乳液吸收劑對的吸收性能。當實驗時間<1500 min,濃度<4000 mg/m3,處理容量為 1-2 m3/(kg·h)時,的凈化率大于 90%。楊驥等用質量分數為 1%的 NaOH 與 1%洗滌劑的混合液為吸收液,測定其對油煙的凈化率。實驗發現當吸收塔填料高度為 5-6 cm,淋洗量為300ml/min 時,凈化效率達到 80%以上。但連續使用 3d,每天使用 1h 后,吸收液會出現渾濁、絮凝的現象。      為進一步提高吸收效率,研究人員也進行了大量實驗,嘗試開發新型吸收設備,其中超重力旋轉填料床是目前較為典型的一種新型吸收技術。劉海弟[36]等用不同種類的吸收液,研究旋轉填料床對油煙的吸收性能。結果表明,當以0.2%的十六烷基三基溴化銨(CTAB)水溶液為吸收液,旋轉床轉速為 900-1000 r/min 時,油煙凈化效率接近 80%,同時也有效證明了超重力技術可以顯著提高氣體在介質中的傳質速率。張秀東研究超重力油煙凈化設備的凈化效率并考察不同濃度的堿性吸收液的吸收性能。結果表明,當堿性溶液濃度為5%時,在超重力因子β為257,氣液比為600的條件下,油煙凈化率能達到92%。      吸收法凈化效率較高,并可回收利用廢氣中的有用物質。但吸收設備占地面積大,且吸收廢液的處理并沒有規范合理的方法,易產生二次污染,在油煙凈化行業也未大力推行。2.2 破壞技術2.2.1生物降解法      生物降解法是涉及氣、液、固三相及生化降解的過程,影響因素較多,國內主要集中在優勢高效菌種的篩選、填料性質的研究及工藝的研究等,但其相關研究和實際應用還并不多。在實驗室規模上,馬紅妍利用生物降解法,從被油煙長時間污染的土壤中篩選出混合菌株作為掛膜微生物,選用玉米芯為填料進行油煙凈化實驗。結果表明在系統運行穩定后,在保證降解率和排放濃度兩項指標的前提下,油煙廢氣進氣濃度低于40.0 mg/m3 時,出氣濃度可達到 0mg/m3,此時油煙廢氣去除率保持在90%以上。廖雷等通過活性污泥馴化,對烹飪煙霧中污染物的生物降解性進行了研究。結果表明,在進氣口溫度為 50-70℃,油煙濃度低于33mg/L時,凈化率為80%以上。       劉超等利用馴化成熟的活性污泥進行油煙生物降解的研究。結果顯示,初始階段36h內液相油煙濃度由32.11 mg/L 迅速降至14.45 mg/L,比降解速率為0.001699 h-1,降解率可維持在80%以上。然而隨著降解時間的增加,比降解速率逐漸減小至0.000447 h-1,說明油煙濃度過低時,不足以提供微生物營養,導致降解速率降低。生物降解法設備簡單,油煙凈化效率較高。但易受溫度、進氣流量等影響,降解效率下降。目前,也尚未在油煙凈化行業較多應用。
        3.安科瑞AcrelCloud3500餐飲油煙監測云平臺
             為了彌補現存餐飲行業在煙油監測上的漏洞,同時便利監管部門的監察,安科瑞油煙監測云平臺應運而生。油煙監測模塊通過2G/4G與云端平臺進行通信和數據交互,系統能夠對企業餐飲設備的開機狀態、運行狀態進行監控;實現開機率監測,凈化效率監測,設施停運告警,待清洗告警,異常告警等功能;對采集數據進行統計分析、排名等統計功能;較之傳統的靜電監測方案,更具實效性。平臺預留與其他應用系統、設備交互對接接口,具有很好的擴展性。3.1 平臺結構     平臺GIS地圖采集餐飲油煙處理設備運行狀態和油煙排放的濃度數據,自動對超標排放及異常企業進行提示預警,監管部門可迅速進行處理,督促餐飲企業整改設備,并定期清洗、維護,實現減排環保,不擾民等目的?,F場安裝監測終端,持續監測油煙凈化器的工作狀態,包括設備運行的電流、電壓、功率、耗電量等等,同時結合排煙口的揮發性物質、顆粒物濃度等進行對比分析,一旦排放超標,系統會發出異常信號。■ 油煙監測設備用來監測油煙、顆粒物、NmHc等數據■ 凈化器和風機配合對油煙進行凈化處理,同時對凈化設備的電流、電壓進行監測 ■ 設備通過4G網絡將采集的數據上傳至遠程云端服務器3.2平臺主要功能(1)在線監測      對油煙排污數據的監測,包括油煙排放濃度,顆粒物,NmHc等數值采集監測;同時對監控風機和凈化器的啟停狀態、運行數據進行監測。(2)告警數據監測系統根據采集的油煙數值大小,產生對應的排放超標告警;對凈化器的運行數據分析,上傳凈化設備對應的運行、停機、故障等告警事件。(3)數據分析運行時長分析,離線分析;告警占比、排名分析;歷史數據統計等。(4)隱患管理系統對采集的告警數據分析,產生對應的隱患記錄,派發、處理隱患,及時處理告警,形成閉環。(5)統計分析包括時長分析、超標分析、歷史數據、分析報告等模塊。(6)基礎數據維護個人信息、權限維護,企業信息錄入,對應測點信息錄入等。(7)數據服務數據采集,短信提醒,數據存儲和解析。3.3 油煙監測主機油煙監控主機是現場的管理設備,實時采集油煙濃度探測器和工況傳感器的信號,進行數據處理,通過有線或無線網絡通訊將數據傳輸到服務器平臺。同時,對本地數據進行存儲,監控現場設備狀態,提供人機操作界面。具體技術參數如下:  注:雙探頭適合雙排煙通道的場合,每路探頭監測1路排煙通道。
        4.結論     餐飲油煙作為中國城市地區的一個大型VOCs排放源,嚴重威脅著生態環境和人體健康。因此,餐飲油煙VOCs凈化技術仍迫切需要深入的研究。      1)本文綜述了餐飲油煙VOCs的排放特征。結果表明,不同烹飪風格和烹飪原料會導致VOCS排放有很大差異。不同菜系烹飪油煙 VOCs排放種類和濃度有明顯差異。典型的非燒烤類菜系中以川菜污染排放較為嚴重,主要以烷烴和烯烴為主。燒烤類菜系以芳香烴類化合物排放為主。不同食用油中,大豆油污染排放濃度較高,玉米油則相對健康。目前,國內外對餐飲油煙VOCs排放特征的研究取得了大量成果,但油煙 VOCs 采樣方式與排放量的估算仍需進一步規范。相關部門要加強小規模及未注冊餐飲業的排放監測,獲得相關排放系數,提高排放量估算的準確性,對制定相關排放標準和控制措施具有指導意義。2)目前我國餐飲油煙凈化設備主要針對油煙顆粒物的去除,但對于油煙VOCs的末端     治理還尚不完善。綜上所述,餐飲油煙VOCs凈化技術種類繁多且較為成熟,回收技術中以吸附法應用較多,但該技術大多應用于大型食品加工行業,并未在中小型餐飲業進行推廣使用。破壞技術可大幅度提高 VOCs 的凈化效率,其中以催化燃燒法的應用較多。催化燃燒是一種綠色、高效的凈化技術,但催化設備造價較高、占地較廣,并不適合低成本的餐飲油煙 VOCs的凈化。針對餐飲油煙成分的復雜性和污染氣體排放情況的差異性,采用單一的治理技術已不能滿足當下的治理需求。因此,為了實現多種VOCs的大范圍去除,通常采用多技術耦合,充分發揮各種 VOCs 凈化技術的優點,實現高效降解。根據上述VOCs凈化技術的分析,低溫等離子體與催化相結合在降低能耗和減少副產物方面具有潛在優勢,也日益受到了人們的關注。等離子體催化系統可以通過改變催化劑表面物理化學性質提升催化劑反應活性,充分利用等離子與催化劑之間的協同作用,提高能量利用率,實現油煙VOCs的高效降解。然而要實現大規模產量化和商業化,催化劑的選擇尤為重要,探究兩者如何協同產生更有利于VOCs降解的物理化學變化仍是我們未來的研究重點。同時,為了踐行國家綠色環保的發展理念,選擇環保的油煙廢氣處理技術,也是未來重點研究的方向。
        【參考文獻】[1]胡永. 吸油煙機中靜電油煙凈化模塊的設計開發[D]. 成都:電子科技大學, 2015.[2]何永兵. 臭氧協同 TiO2 光催化氧化餐飲油煙中 VOCs 的研究[D]. 哈爾濱:哈爾濱工業大學, 2014.[3]鄭少卿. 餐飲業油煙中 VOCs 的排放特征及其治理技術的研究[D]. 河北:河北科技大學, 2017. [4]王亞琪,常甜,陳慶彩. 餐飲源 VOCs 組成特征及處理技術研究進展.[J]環境工程.2021.[5]安科瑞AcrelCloud-3500餐飲油煙監測云平臺.2020.05版.

        © 2022 安科瑞電氣股份有限公司 版權所有
        滬ICP備05031232號-15 GoogleSiteMap 技術支持:制藥網    管理登陸    總訪問量:290555
        在線咨詢
        少妇挑战三个黑人惨叫4p国语
        1. <track id="4iqmi"></track>

          <pre id="4iqmi"></pre>
          <track id="4iqmi"><strike id="4iqmi"></strike></track>
            1. <tr id="4iqmi"></tr>